game $G=(N,S,u)$ $\mapsto$ weighted cong. game $H=(N,T,\pi)$:
$R \coloneqq S$
$R(T_i) \coloneqq \Set{\bigcup_{s_{-i} \in S_i}\set{(s_i,s_{-i})} \SMid s_i \in S_i}$
weights $d_i \coloneqq n+i-2$, where $n \coloneqq \abs{N}$
$c_s(l) \coloneqq \begin{cases}\class{tempstep a}{\data{tempstep-list=8-35;61-100}{\sum_{s_{-i}'}\Bigl(\prod_{j \neq i}\bigl(\frac{1}{k-1}-\CharF{s_j'=s_j}\bigr)\Bigr)\cdot\frac{u_i(s_i,s'_{-i})}{d_i}}}, &\text{if } l = d_i\\0, &\text{else}\end{cases}$
Obs: $d_i+d_j \geq 2n-1 \gt d_k$ f.a. $i,j,k \in N$.
\begin{align*}
\pi_i(\phi(s))
&\phantom{=d_i\cdot\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\sum_{s'_{-i} \in S_{-i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}}
\end{align*}
\begin{align*}
\phantom{\pi_i(\phi(s))}
&=d_i\cdot\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}c_{r(\bar s)}(d_i)\phantom{\Big)} \\
&\phantom{=d_i\cdot\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\sum_{s'_{-i} \in S_{-i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}}
\end{align*}
\begin{align*}
\phantom{\pi_i(\phi(s))}
&=d_i\cdot\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\sum_{s'_{-i} \in S_{-i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}
\end{align*}
\begin{align*}
\phantom{\pi_i(\phi(s))}
&=d_i\cdot\sum_{s'_{-i} \in S_{-i}}\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}
\end{align*}
\begin{align*}
\phantom{\pi_i(\phi(s))}
&=\sum_{s'_{-i} \in S_{-i}}u_i(s_i,s'_{-i})\cdot \sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\phantom{\Big)}\\
&\phantom{=d_i\cdot\sum_{s'_{-i} \in S_{-i}}\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}}
\end{align*}
\begin{align*}
\phantom{\pi_i(\phi(s))}
&=\sum_{s'_{-i} \in S_{-i}}u_i(s_i,s'_{-i})\cdot \prod_{j \neq i}\sum_{\substack{\bar s_j \in S_j:\\\bar s_j \neq s_j}}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\phantom{\Big)}\\
&\phantom{=d_i\cdot\sum_{s'_{-i} \in S_{-i}}\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}}
\end{align*}
\begin{align*}
\phantom{\pi_i(\phi(s))}
&=\sum_{s'_{-i} \in S_{-i}}u_i(s_i,s'_{-i})\cdot \prod_{j \neq i}\bigl(\tfrac{\abs{S_j \setminus \{s_j\}}}{k-1}-\chi_{s'_j \neq s_j}\bigr)\phantom{\Big)}\\
&\phantom{=d_i\cdot\sum_{s'_{-i} \in S_{-i}}\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}}
\end{align*}
\begin{align*}
\phantom{\pi_i(\phi(s))}
&=\sum_{s'_{-i} \in S_{-i}}u_i(s_i,s'_{-i})\cdot \prod_{j \neq i}\bigl(1-\chi_{s'_j \neq s_j}\bigr)\phantom{\Big)}\\
&\class{tempstep a}{\data{tempstep-from=34}{\,=\sum_{s'_{-i} \in S_{-i}}u_i(s_i,s'_{-i})\cdot \chi_{s'_{-i}=s_{-i}}}} \\
&\class{tempstep a}{\data{tempstep-from=35}{\,= u_i(s_i,s_{-i}) = u_i(s).}}\phantom{\Big)}\\
&\phantom{=d_i\cdot\sum_{s'_{-i} \in S_{-i}}\sum_{\substack{\bar s \in S:\, \bar s_i = s_i,\\\bar s_j \neq s_j \text{ f.a. } j \neq i}}\Bigl(\prod_{j \neq i}\bigl(\tfrac{1}{k-1}-\chi_{s'_j=\bar s_j}\bigr)\Bigr)\tfrac{u_i(s_i,s'_{-i})}{d_i}}
\end{align*}
$\rddots$ $\cdots$ ${\color{var(--blue)}s_2}$ $\cdots$
$\vdots$
${\color{var(--red)}s_1}$ $\phantom{({\color{var(--red)}s_1},{\color{var(--blue)}s_2},{\color{var(--green)}s_3})}$
$\vdots$
$\cdots$ ${\color{var(--blue)}s_2}$ $\cdots$
$\vdots$
${\color{var(--red)}s_1}$ $\phantom{({\color{var(--red)}s_1},{\color{var(--blue)}s_2},{\color{var(--green)}s_3})}$
$\vdots$
$\cdots$ ${\color{var(--blue)}s_2}$ $\cdots$
$\vdots$
${\color{var(--red)}s_1}$ $({\color{var(--red)}s_1},{\color{var(--blue)}s_2})\phantom{,{\color{var(--green)}s_3}}$
$\vdots$
${\color{var(--green)}s_3}$ $\cdots$ ${\color{var(--blue)}s_2}$ $\cdots$
$\vdots$
${\color{var(--red)}s_1}$ $({\color{var(--red)}s_1},{\color{var(--blue)}s_2},{\color{var(--green)}s_3})$
$\vdots$
$\rddots$ $\cdots$ ${\color{var(--blue)}s_2}$ $\cdots$
$\vdots$
${\color{var(--red)}s_1}$ $\phantom{({\color{var(--red)}s_1},{\color{var(--blue)}s_2},{\color{var(--green)}s_3})}$
$\vdots$
\rddots
\cdots
\vdots
s
\cdots
\vdots
\rddots